Madoka NISHIMURA, Kiyotaka ASAKURA, and Yasuhiro IWASAWA* Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113 The new low-valent Nb monomer catalysts which were prepared by taking advantage of the reaction between $Nb(\eta^3-C_3H_5)_4$ and surface OH groups on SiO_2 , Al_2O_3 , or TiO_2 , followed by the treatments with H_2 , were found to be active for the hydrogenation of carbon monoxide in which C_2-C_4 hydrocarbons were mainly produced in the temperature range 423-598 K. In contrast, only the disproportionation reaction of CO to form CO_2 proceeded on usual impregnation Nb catalysts and Nb_2O_5 . The attached metal catalysts obtained by the reactions between metal- η^3 -C3H5 complexes and surface OH groups of inorganic oxides such as SiO2, Al2O3, etc., followed by chemical treatments with H2 or O2, have been demonstrated to provide a new way of preparations of active, well-defined catalysts¹⁾ with new surface structures and hence novel catalytic properties.², ³⁾ This attaching method may also be useful particularly for preparations of highly dispersed, lower-valent metal atoms which are hardly obtained in a traditional way (impregnation using inorganic metal salts, calcination in air and reduction with H2 or CO). Niobium in Nb2O5 and impregnated Nb(V) catalysts is a hardly-reduced element and the study on their catalysis has been restricted to higher-valent Nb catalysts although NbO_X (x<2.5) species has been suggested to contribute to the catalysis of Nb2O5-supported metal catalysts in a strong metal-support interaction (SMSI) state.⁴⁻⁷⁾ In the present paper the catalytic properties of the low-valent Nb monomers attached on SiO2, Al2O3, or TiO2 in the hydrogenation of CO are reported. The low-valent Nb catalysts (4-6) were prepared by the treatments of the attached Nb(IV)-allyl catalysts²) (1-3) with H₂ at 673 K as shown in Scheme 1. The surface structures 1-3 have been characterized by means of ESR, IR, temperature programmed decomposition, and chemical analysis.²) The allyl ligands in 1-3 were removed by the H₂ reduction, evolving C₁-C₄ hydrocarbons (mainly CH₄, C₂H₆, and C₃H₈). After the H₂ treatments the characteristic ESR peak for Nb(IV) ions in 1-3 disappeared, suggesting that the Nb(IV) species were reduced to the lower valent level. The species 4-6 were converted to Nb(V) monomers by oxidation with O₂, uptaking two O atoms or one O atom per Nb atom for 4 and 5, or 6, respectively, as previously reported.³,8) The Nb(V) monomers were found to be attached to the support surfaces in a bidentate form (SiO₂ and Al₂O₃) or a terdentate form (TiO₂) 574 Chemistry Letters, 1987 Scheme 1. The attachment of $Nb(\eta^3-C_3H_5)_4$ onto SiO_2 , Al_2O_3 , and TiO_2 , and the surface transformations. by means of EXAFS, UV, and Raman spectroscopies. 3) Reversely, from the Nb(V) structures the Nb(I) or Nb(III) structures in Scheme 1 may be suggested. However, judging from the CO₂ formation in the oxidation of 4 and 5 with O₂, more than one carbon atoms per Nb atom still remained on the catalysts $\frac{4}{\sim}$ and $\frac{5}{\sim}$ after the H₂ treatments of $\frac{1}{2}$ and $\frac{2}{2}$ at 673 K, respectively. In order to know whether or not these residual carbons are chemically bound to Nb atoms, the EXAFS spectra of 1 and 4 as typical examples were measured at 77 K. The Fourier transform of the EXAFS spectrum of 1 showed a peak assignable to Nb-C and Nb-O bonds which could The bond distance and the coordination number not be distinguished each other. were determined to be 0.190 to 0.003 nm and 3 to 1, respectively, by a curve-fitting technique. The Fourier transform of the EXAFS spectrum of 4 also showed one peak. However the one-shell curve-fitting analysis resulted in a rather large Debye Waller factor, suggesting that this peak may not be composed of a single coordination shell. Then we carried out the two-shell fitting analysis and obtained much better results. The bond distances (the coordination numbers) were found to be 0.181 ± 0.003 nm(0.7 ± 0.3) and 0.194 ± 0.003 nm(1.7 ± 0.5). The longer-bond peak is straightforwardly assigned to Nb-O (surface) bonds from the similarity in bond length to the Nb-O bonds of 1 (0.190 nm) and the SiO_2 -attached Nb(V) monomer structure (0.193 nm). The bond distance of 0.181 nm is much shorter than 0.190 nm for the Nb-C (r- allyl) bonds and the Nb-O (surface) bonds and also much longer than 0.168 nm for the Nb=O double bond of the Nb(V) monomer structure. these results together with the presence of the residual carbons on 4 suggest that the shorter- bond peak is assignable to the Nb-C(carbide) bond. The EXAFS analysis showed no Nb-Nb bond, which confirms the monomer structure of $\frac{4}{2}$. Thus the Nb-carbide monomer (7) attached to SiO₂ through two oxygen atoms is proposed. In contrast to $\frac{4}{2}$ /SiO₂ and $\frac{5}{2}$ /Al₂O₃ the amount of the residual carbons on $\frac{6}{102}$ was less than 0.1 C/Nb. The hydrogenation of carbon monoxide on the attached Nb catalysts 4-6, the impregnation Nb catalysts, and an unsupported Nb₂O₅ was carried out in a closed circulating system (dead volume: 170 cm³) equipped with a U-shaped liq. N₂ trap. The reaction rates and selectivities were mesured in 1.5 h of reaction. | Table 1. Ti | The hydrogena
and Nb2O5 | ation of CO over the | e attached Nb | catalysts | | the im | pregn | impregnation | NP | catalysys | sys, | | |---------------------|----------------------------|----------------------|---------------|-----------|----------|----------|----------------|------------------|---------|-----------|------|-----| | Catalysts | Supports | - | Reaction | | | | Sele | Selectivities | ties | 8 / | | | | | | remperatures / n | umol·min-1 | C02 | ပ် | C2 | 2 | ည | m | C4 | | C5 | | | | | · (qu-6)• | | | c2_ | c2 <u></u> | ر ₃ - | . "ည | C4_ | C4= | | | \
\ | | lα | 3 | 0 | 10 | 36 | 0 | | - | 17 | 0 | 6 | | q _N / | sio_2 | 7 | 7. | 0 | | 33 | 0 | | 5 | 13 | 0 | 9 | | ;
, , | | 523
573 | 30.6
34.8 | 00 | 16
14 | 41
39 | 0 m | 23 | 4
26 | 3 - | 0 m | 0 2 | | Impreg. | SiO ₂ | 523 | 3.6 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ٦ | | 7 | 4.8 | 0 | 37 | 14 | - | | 7 | ∞ | 0 | 0 | | ,
, | | 9 | • | 0 | 41 | | 0 | 30 | 2 | 7 | 0 | 0 | | Q. | $^{A1}_{203}$ | 0 | • | 0 | 65 | 14 | 0 | | 7 | 2 | 0 | 0 | | ;
} | | 548
598 | 22.8
52.2 | 00 | 74
55 | 9 7 | 2 ₆ | ന സ | 2 T | 00 | ი ო | 00 | | Impreg. | A1203 | 523 | 4.8 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \ | | 2 | • | 0 | 7 | 31 | 0 | | 0 | 22 | 0 | 0 | | dN \\ | \mathtt{TiO}_2 | ο. | • | 0 | 16 | 41 | 0 | 22 | 2 | 16 | 0 | 0 | | ,
 | | 548
598 | 14.4
19.8 | 00 | 27
30 | 33
18 | 00 | 16
7 | 10 | 8 | 15 | 00 | | Impreg. | Ti02 | 523 | 19.8 | 100 | 0 | 0 | 0 | Ó | 0 | 0 | 0 | 0 | | Nb205 | none | 523 | 9.0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | CO = 13.3 kPa, H₂ = 26.7 kPa. 576 Chemistry Letters, 1987 The products of CO hydrogenation on the attached catalysts were hydrocarbons (100% selectivity for C_1-C_5) in the temperature range 423-598 K as given in Table 1. No formation of CO2 was observed. The SiO2-attached Nb catalyst 4 was found to show the highest activity among the three catalysts 4-6. It yielded mainly $\text{C}_2\text{-C}_4$ hydrocarbons with the selectivities of 75-86% at 423-573 K. As the reaction temperature increased, the formation of unsaturated hydrocarbons relatively increased; especially propene attained to 68% of C3 components. Besides this feature, the selectivity to methane was kept to the low levels, 10% (423 K) - 14% (573 K). The activities of the TiO_2 -attached Nb catalyst 6 was lower than those of the SiO_2 -attached Nb catalyst $\frac{4}{2}$ as shown in Table 1. The catalyst $\frac{6}{2}$ also yielded mainly C2-C4 hydrocarbons with the selectivities of 70-89% which are similar to those for 4, but the C4 formation was larger on 6 than on 4. In contrast to $\frac{4}{8}$ and $\frac{6}{6}$, methane was preferentially produced on $\frac{5}{6}$. The unsaturated hydrocarbons became main products in $\text{C}_2\text{-C}_4$ components at the higher temperatures. trend that the formatiom of C_2 - C_4 alkenes increased with an increase of reaction temperature may be a specific feature of the low-valent Nb monomer catalysts. On the other hand, an unsupported Nb_2O_5 and conventional impregnation Nb catalysts which were prepared by a usual impregnation method using a methanol solution of $NbCl_5$, followed by calcination at 820 K, poduced CO_2 alone under the similar conditions as shown in Table 1. The results were similar also to the catalysts reduced with H_2 at 673 K or 820 K in situ before CO hydrogenation. The attached Nb catalysts 4-6 were stable during CO hydrogenation and showed constant activities for at least 5 h. This may be peculiar since the catalysts 4 and 5 have formally univalency which should be oxidized and poisoned by oxygen atoms from CO and water formed during catalysis. The carbide ligand shown in 7 is likely to prevent the active Nb structure from unfavorable oxidation and hence deactivation. The carbide (12 C) ligand was not an active precursor for the reaction because 13 CO hydrogenation on 7 produced the hydrocarbons containing only 13 C. The attached catalyst 6 had almost no carbon as the ligand of Nb but in this case the Nb atoms are already in a moderate oxidation state of tervalency. Although the working Nb structures for CO hydrogenation are under a further investigation, the low valent niobia were found to serve as an active element for CO hydrogenation. ## References - 1) "Tailored Metal Catalysts," ed by Y. Iwasawa, D. Reidel Publishing Co., Holland(1986). - 2) M.Nishimura, K.Asakura, and Y.Iwasawa, Chem.Lett., 1986, 1457. - 3) M.Nishimura, K.Asakura, and Y.Iwasawa, J.Chem.Soc., Chem.Commun., 1986, 1660. - 4) S.J.Tauster and S.C.Fung, J.Catal., <u>55</u>, 29 (1978). - 5) B.A.Sexton, A.E.Hughes, and K.Foger, J.Catal., 77, 85(1982). - 6) K.Kunimori, Y.Doi, K.Ito, and T.Uchijima, J.Chem.Soc., Chem.Commun., 1986, 965. - 7) E.I.Ko, M.Hupp, and N.J.Wagner, J.Catal., <u>86</u>, 315(1984). - 8) The amounts of oxygen consumed in the oxidation of 4-6 to the Nb(V) structures were determined by taking into account the amounts of CO₂ formed from the oxidation of the residual carbons. (Received December 19, 1986)